5V ECL 3-Bit Differential Flip-Flop

Description

The MC10E/100E431 is a 3-bit flip-flop with differential clock, data input and data output.

The asynchronous Set and Reset controls are edge-triggered rather than level controlled. This allows the user to rapidly set or reset the flip-flop and then continue clocking at the next clock edge, without the necessity of de-asserting the set/reset signal (as would be the case with a level controlled set/reset).

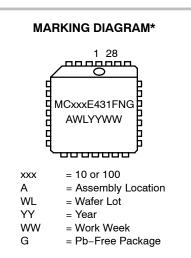
The E431 is also designed with larger internal swings, an approach intended to minimize the time spent crossing the threshold region and thus reduce the metastability susceptibility window.

The differential input structures are clamped so that the inputs of unused registers can be left open without upsetting the bias network of the device. The clamping action will assert the \overline{D} and the \overline{CLK} sides of the inputs. Because of the edge triggered flip-flop nature of the device simultaneously opening both the clock and data inputs will result in an output which reaches an unidentified but valid state. Note that the input clamps only operate when both inputs fall to 2.5 V below V_{CC}.

The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μ F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open.

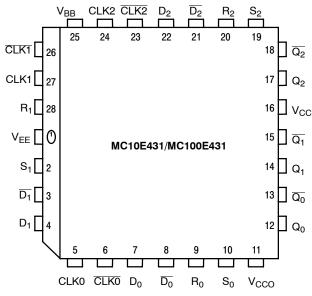
The 100 Series contains temperature compensation.

Features


- Edge-Triggered Asynchronous Set and Reset
- Differential D, CLK and Q; V_{BB} Reference Available
- 1100 MHz Min. Toggle Frequency
- PECL Mode Operating Range: $V_{CC} = 4.2 \text{ V to } 5.7 \text{ V}$ with $V_{EE} = 0 \text{ V}$
- NECL Mode Operating Range: $V_{CC} = 0 V$ with $V_{EE} = -4.2 V$ to -5.7 V
- Internal Input 50 kΩ Pulldown Resistors
- ESD Protection: Human Body Model; > 2 kV, Machine Model; > 200 V Charged Device Model; > 2 kV
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test

ON Semiconductor®

http://onsemi.com


*For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

- Moisture Sensitivity Level: Pb = 1; Pb-Free = 3 For Additional Information, see Application Note AND8003/D
- Flammability Rating: UL 94 V-0 @ 0.125 in, Oxygen Index: 28 to 34
- Transistor Count = 348 devices
- Pb-Free Packages are Available*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

* All V_{CC} and V_{CCO} pins are tied together on the die.

Warning: All V_{CC} , V_{CCO} , and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.

Figure 1. Pinout: PLCC-28 (Top View)

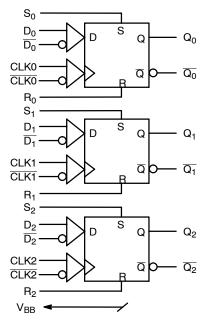


Figure 2. Logic Diagram

Table 1. PIN DESCRIPTION

PIN	FUNCTION
D[0:2], D[0:2]	ECL Differential Data Inputs
CLK[0:2], CLK[0:2]	ECL Differential Clock
S[0:2]	ECL Edge Triggered Set Inputs
R[0:2]	ECL Edge Triggered Reset Input
Q[0:2], <u>Q</u> [0:2]	ECL Differential Data Outputs
V _{BB}	Reference Voltage Output
V _{CC} , V _{CCO}	Positive Supply
V _{EE}	Negative Supply

Table 2. FUNCTION TABLE

Dn	CLKn	Rn	Sn	Qn
L	Z	L	L	L
н	Z	L	L	н
х	х	Z	L	L
Х	х	L	Z	н

Z = Low to high transition

X = Don't Care

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		8	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{l} V_{I} \leq V_{CC} \\ V_{I} \geq V_{EE} \end{array}$	6 -6	V V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
I _{BB}	V _{BB} Sink/Source			± 0.5	mA
T _A	Operating Temperature Range			0 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	PLCC-28 PLCC-28	63.5 43.5	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	PLCC-28	22 to 26	°C/W
T _{sol}	Wave Solder Pb Pb-Free			265 265	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

			0°C			25°C			85°C		I
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		110	132		110	132		110	132	mA
V _{OH}	Output HIGH Voltage (Note 2)	3980	4070	4160	4020	4105	4190	4090	4185	4280	mV
V _{OL}	Output LOW Voltage (Note 2)	3050	3210	3370	3050	3210	3370	3050	3227	3405	mV
VIH	Input HIGH Voltage (Single-Ended)	3830	3995	4160	3870	4030	4190	3940	4110	4280	mV
V _{IL}	Input LOW Voltage (Single-Ended)	3050	3285	3520	3050	3285	3520	3050	3302	3555	mV
V_{BB}	Output Voltage Reference	3.62		3.74	3.65		3.75	3.69		3.81	V
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3)	2.7		5.0	2.7		5.0	2.7		5.0	V
I _{IH}	Input HIGH Current			150			150			150	μA
IIL	Input LOW Current	0.5	0.3		0.5	0.25		0.3	0.2		μA

Table 4. 10E SERIES PECL DC CHARACTERISTICS V_{CCx}= 5.0 V; V_{EE}= 0.0 V (Note 1)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary –0.46 V / +0.06 V. 2. Outputs are terminated through a 50 Ω resistor to V_{CC} – 2.0 V.

3. V_{IHCMR} min varies 1:1 with V_{EE} , max varies 1:1 with V_{CC} .

Table 5. 10E SERIES NECL DC CHARACTERISTICS V_{CCx}= 0.0 V; V_{EE}= -5.0 V (Note 4)

			0°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		110	132		110	132		110	132	mA
V _{OH}	Output HIGH Voltage (Note 5)	-1020	-930	-840	-980	-895	-810	-910	-815	-720	mV
V _{OL}	Output LOW Voltage (Note 5)	-1950	-1790	-1630	-1950	-1790	-1630	-1950	-1773	-1595	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	-1170	-1005	-840	-1130	-970	-810	-1060	-890	-720	mV
V _{IL}	Input LOW Voltage (Single-Ended)	-1950	-1715	-1480	-1950	-1715	-1480	-1950	-1698	-1445	mV
V _{BB}	Output Voltage Reference	-1.38		-1.27	-1.35		-1.25	-1.31		-1.19	V
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 6)	-2.3		0.0	-2.3		0.0	-2.3		0.0	V
I _{IH}	Input HIGH Current			150			150			150	μA
IIL	Input LOW Current	0.5	0.3		0.5	0.065		0.3	0.2		μA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

4. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary –0.46 V / +0.06 V.

5. Outputs are terminated through a 50 Ω resistor to V_{CC} – 2.0 V.

6. V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}.

85°C

			OOX	, LI	-	,			
		0°C				25°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	
lee	Power Supply Current		110	132		110	132		

Table 6. 100E SERIES PECL DC CHARACTERISTICS V_{CCx}= 5.0 V; V_{FF}= 0.0 V (Note 7)

Max Unit Тур 127 152 mA IEE ower Supply Current 3975 4050 4120 3975 4050 4120 3975 4050 4120 mV Vон Output HIGH Voltage (Note 8) Output LOW Voltage (Note 8) 3190 3295 3380 3190 3255 3380 3190 3260 3380 VOL mν V_{IH} Input HIGH Voltage (Single-Ended) 3835 3975 4120 3835 3975 4120 3835 3975 4120 mV VIL Input LOW Voltage (Single-Ended) 3190 3355 3525 3190 3355 3525 3190 3355 3525 mV VBB **Output Voltage Reference** 3.62 3.74 3.62 3.74 3.62 3.74 V V VIHCMR Input HIGH Voltage Common Mode Range 2.7 5.0 2.7 5.0 2.7 5.0 (Differential Configuration) (Note 9) Input HIGH Current 150 150 150 μA I_{H} Ι_{ΙL} Input LOW Current 0.5 0.3 0.5 0.25 0.5 0.2 μA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

7. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary –0.46 V / +0.8 V.

8. Outputs are terminated through a 50 Ω resistor to V_{CC} – 2.0 V.

9. V_{IHCMR} min varies 1:1 with V_{EE} , max varies 1:1 with V_{CC} .

Table 7. 100E SERIES NECL DC CHARACTERISTICS V_{CCx}= 0.0 V; V_{EE}= -5.0 V (Note 10)

			0°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		110	132		110	132		127	152	mA
V _{OH}	Output HIGH Voltage (Note 11)	-1025	-950	-880	-1025	-950	-880	-1025	-950	-880	mV
V _{OL}	Output LOW Voltage (Note 11)	-1810	-1705	-1620	-1810	-1745	-1620	-1810	-1740	-1620	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	-1165	-1025	-880	-1165	-1025	-880	-1165	-1025	-880	mV
V _{IL}	Input LOW Voltage (Single-Ended)	-1810	-1645	-1475	-1810	-1645	-1475	-1810	-1645	-1475	mV
V_{BB}	Output Voltage Reference	-1.38		-1.26	-1.38		-1.26	-1.38		-1.26	V
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 12)	-2.3		0.0	-2.3		0.0	-2.3		0.0	V
I _{IH}	Input HIGH Current			150			150			150	μA
IIL	Input LOW Current	0.5	0.3		0.5	0.25		0.5	0.2		μA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

10. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary –0.46 V / +0.8 V.

11. Outputs are terminated through a 50 Ω resistor to V_{CC} – 2.0 V.

12. V_{IHCMR} min varies 1:1 with V_{EE} , max varies 1:1 with V_{CC} .

				-40°℃			25°C			85°C		
Symbol	Characteristic		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{MAX}	Maximum Toggle Frequency						1.1					GHz
t _{PLH} t _{PHL}	Propagation Delay to Output	CLK R S	550 500 500	700 725 725	850 975 975	550 550 550	700 725 725	850 925 925	550 550 550	700 725 725	850 925 925	ps
t _S	Setup Time	D R (Note 14) S (Note 14)	250 1100 1100	0 700 700		200 1000 1000	0 700 700		200 1000 1000	0 700 700		ps
t _H	Hold Time	D	250	0		200	0		200	0		ps
t _{PW}	Minimum Pulse Width	CLK	400			400			400			ps
t _{skew}	Within-Device Skew (Note 15)		50						50		ps
t _{JITTER}	Random Clock Jitter (RMS)			< 1			< 1			< 1		ps
V _{PP}	Input Voltage Swing (Differential Configuration)		150		1000	150		1000	150		1000	mV
t _r /t _f	Rise/Fall Times (20-80%)		250	450	700				275	450	650	ps

Table 8. AC CHARACTERISTICS V_{CCx}= 5.0 V; V_{EE}= 0.0 V or V_{CCx}= 0.0 V; V_{EE}= -5.0 V (Note 13)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

13.10 Series: V_{EE} can vary -0.46 V / +0.06 V.

100 Series: V_{EE} can vary -0.46 V / +0.8 V.

14. These setup times define the minimum time the CLK or SET/RESET input must wait after the assertion of the RESET/SET input to assure the proper operation of the flip-flop.

15. Within-device skew is defined as identical transitions on similar paths through a device.

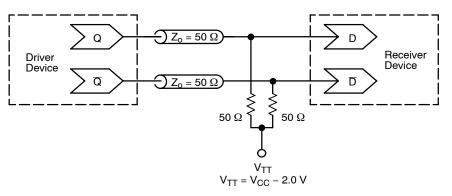
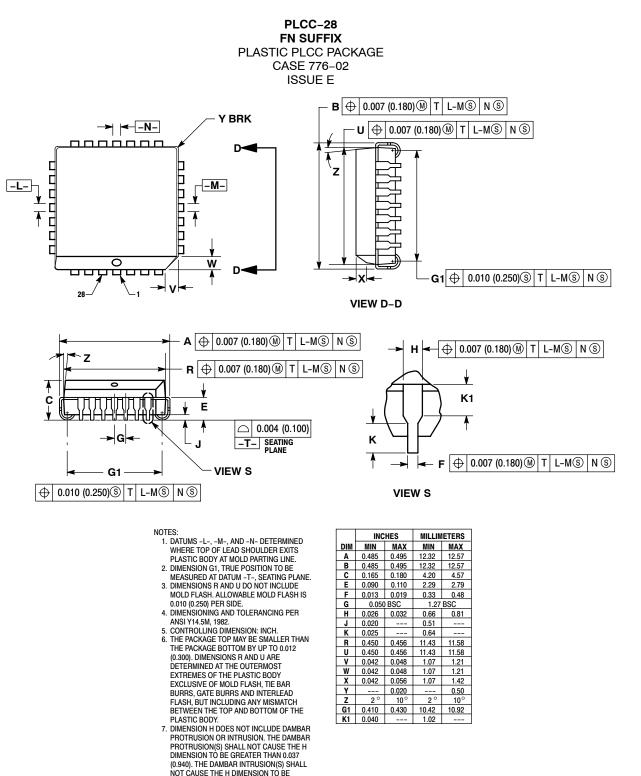


Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.)

ORDERING INFORMATION


Device	Package	Shipping [†]
MC10E431FN	PLCC-28	37 Units / Rail
MC10E431FNG	PLCC-28 (Pb-Free)	37 Units / Rail
MC10E431FNR2	PLCC-28	500 / Tape & Reel
MC10E431FNR2G	PLCC-28 (Pb-Free)	500 / Tape & Reel
MC100E431FN	PLCC-28	37 Units / Rail
MC100E431FNG	PLCC-28 (Pb-Free)	37 Units / Rail
MC100E431FNR2	PLCC-28	500 / Tape & Reel
MC100E431FNR2G	PLCC-28 (Pb-Free)	500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Resource Reference of Application Notes

AN1405/D	-	ECL Clock Distribution Techniques
AN1406/D	-	Designing with PECL (ECL at +5.0 V)
AN1503/D	-	ECLinPS [™] I/O SPiCE Modeling Kit
AN1504/D	-	Metastability and the ECLinPS Family
AN1568/D	-	Interfacing Between LVDS and ECL
AN1672/D	-	The ECL Translator Guide
AND8001/D	-	Odd Number Counters Design
AND8002/D	-	Marking and Date Codes
AND8020/D	-	Termination of ECL Logic Devices
AND8066/D	-	Interfacing with ECLinPS
AND8090/D	-	AC Characteristics of ECL Devices

PACKAGE DIMENSIONS

SMALLER THAN 0.025 (0.635).

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and IIII are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use personse and regarding the design or manufacture of the part. SCILLC is an Equal Opportunit//Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative